
Journal of Sound and <ibration (2002) 254(4), 635}676
doi:10.1006/jsvi.2001.4112, available online at http://www.idealibrary.com on

0

A FAST TIME}DOMAIN INTEGRATION METHOD
FOR COMPUTING NON-STATIONARY RESPONSE

HISTORIES OF LINEAR OSCILLATORS WITH
DISCRETE-TIME RANDOM FORCING

J. F. DUNNE

School of Engineering and Information ¹echnology, ¹he ;niversity of Sussex, Falmer, Brighton,
BN1 9Q¹, England

(Received 5 December 2000, and in ,nal form 3 August 2001)

A new approach is presented for computing displacement histories of single linear
oscillators with arbitrarily light damping and general forcing*of particular use for e$cient
Monte Carlo simulation of modal systems with ultra-light damping and very broadband
non-Gaussian excitation. Solution methods are initially presented within a state transition
context, to show limitations of FFT solutions, and to establish, for long-run non-stationary
stochastic analysis via fast Laplace, the need for appropriate zero-padding, high cut-o!
frequency, and "xed-step sampling. Truncation errors arising in single-transition
time-domain convolution are then examined via the Euler}Maclaurin summation formula.
Errors are shown to be minimumwhen transition intervals are chosen as integer multiples of
the damped natural period, precisely where the O(����f �) error can be evaluated, and the
velocity transition equation can be dispensed with. The paper shows that an optimum
O(����f ���) integration scheme can be used for fast time-domain convolution in a two-stage
algorithm. First, phased-pairs of accurate displacements are e$ciently predicted at selected
transition times. These are then used as boundary conditions in adaptive Chebychev
polynomial solution giving continuous displacement histories for selected cycles*this
considerably reduces the number of multiplications and integrations normally required.
Two-stage integration turns out to be at least 100 times faster than explicit short-transition
time-domain solution, and for general applications, at least as fast as the Laplace/IFFT
approach. But for non-stationary probability density estimation, involving far-future history
prediction the speed advantage over fast Laplace can be enormous.

� 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

Small-amplitude motion of lightly damped space structures with broadband random
loading, can be modelled to moderately high frequency with constant-coe$cient linear
di!erential equations [1, 2]. Very light damping, however, can cause serious vibration
problems in space structures, where much e!ort has gone into "nding additional damping
through better understanding of materials [3, 4], or through active control [5]. Intrinsic
damping levels in small space structures can be as low as 0)2% critical for low-frequency
modes, but very much less than 0)1% for the higher modes of larger structures. Random
forcing can occur on space structures as continuous or intermittent broadband noise
(perhaps with screech tones) through turbulent #ow in ducting and pipes [6], from jet or
thruster noise [7], from #ow inside high-speed machinery [8, 9] and from the use of
022-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.
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pyrotechnic devices [10]. Typically, this is characterized by a very high-frequency range,
departure from normal or well-known distributions, and possible quiet periods, through
intermittent activity on-board. With these characteristics, non-stationary stochastic
analysis o!ers a key route to &&worst-case'' response prediction. Indeed, for the very worst
case, zero structural damping should be used since this most likely gives largest
response. But the time-scales for such non-stationary analysis can be relatively long, making
much of the response build-up of little importance, deeming &&far-future'' statistics of
interest. Accurate and e$cient &&far-future'' prediction of structural vibration using dynamic
models with ultra-low damping, can be di$cult for both deterministic and stochastic
analysis.

Non-stationary stochastic analysis of m.d.o.f. linear systems can be approached by using
(1) analytical methods, or (2) via Monte Carlo simulation (where pseudo-deterministic
response histories are generated numerically and then used in statistical analysis). The
accuracy of analytical methods depends initially on having an adequate statistical description
of the excitation. This requires su$cient "eld data to "t an input model (via techniques similar
to those used for seismic data [11, 12]). Probabilistic models however are &&information
intensive'' [13], and in some cases input data requirements may be di$cult to meet. Monte
Carlo methods by contrast, can be applied to any number of input histories, but to estimate
output statistics, enough samples are required. Indeed if design probabilities are low, a very
large ensemble is needed. In assessing the best approach, i.e., analytical versus Monte Carlo
methods, this depends both on meeting sample size requirements and accuracy.

E$cient analytical methods have been developed for non-stationary response analysis of
m.d.o.f. linear systems [14}17] by assuming a modulated power spectrum fully describes the
input process. These methods give output correlation matrices or power spectra under
general input conditions. Exact probabilities can also be obtained, but for normal excitation
only. E$cient methods have also been developed to approximate non-stationary crossing
or extreme value statistics for s.d.o.f. systems with normal forcing [18}20]. The FPK
equation [21] also o!ers a route to transition probabilities for low dimension systems with
normal or functionally related forcing, but the form of numerical solution usually required
is often very demanding. Non-normal excitation can cause signi"cant prediction errors if
normality is otherwise assumed [22, 23], and several methods have been developed to
handle systems driven by certain types of non-normal excitation. Two methods are of
signi"cance, namely use of the space moments method [24] for systems driven by a "ltered
train of pulses randomly distributed in time, and the maximum entropy method [25] for
polynomial functions of normal forcing. A moment di!erential approach has also been
developed for polynomial functions of delta-correlated excitation [26] which, for external
and parametric excitation, satis"es an important closure property [27, 28]. C-type Gram
Charlier series have also been applied (to a beam structure) with delta-correlated excitation
[29]. Wholly analytical methods are computationally e$cient, but can only be applied
when the excitation assumptions are valid [30]. None of the methods cited give exact
response probabilities for general types of random excitation. Monte Carlo methods can do
this, but often at great computational cost.

Monte Carlo simulation does indeed o!er a practical alternative for ultra-light damped
systems using measured or simulated excitation of high-bandwidth [31], provided
predictions of individual response histories remain accurate. Displacement prediction over
a long duration requires accuracy in amplitude and phase be maintained, as for steady state
response, but in non-stationary analysis, there is a greater computational burden because
a higher cut-o! frequency is needed. Fast displacement prediction for damped linear
systems, can be obtained using superposition and standard discrete FFT techniques [32].
Greater e$ciency can be obtained for normal mode systems, by reduction to uncoupled
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second order equations. When damping becomes light, constant-coe$cient linear models
tend, in the limit, to normal mode systems. As damping approaches zero, however,
computational demand using FFT explodes, justifying alternatives such as Laplace
transform [33], or use of time-domain methods via direct Duhamel integration [34}36] or
step-by-step schemes [37]. Numerous simple integration schemes have been developed for
arbitrary damping levels and general forcing in continuous-time (a good example of
a simple recursive scheme is given in reference [38]). These algorithms tend to be
computationally very slow. Recently, a fast continuous-timemethod has been developed by
exploiting special (non-linear) interpolation functions for use with discrete excitation [39],
although when used with random histories, error analysis is di$cult. Indeed, it has been
clearly recognized [40], that no step-by-step algorithm can ever be exact for use with
discrete-time random excitation.

In choosing a numerical method for use in Monte Carlo simulation of systems with
ultra-light damping and ultra-high-bandwidth discrete random excitation, a Laplace
transform solution, using single-section DFFT, will usually be faster than any time-domain
approach. However, a long simulation involving one single section, may require massive
memory, such that much of the speed advantage over a time-domain solution is lost.
Moreover, there is scope for speeding-up time-domain methods by focusing on far-future
response prediction and exploiting quiet periods. A discrete-time method is also much more
preferable for simulating the required target statistical properties of the excitation because
unlimited length sections can be constructed much faster than parametrically generated
histories, and also because measured histories are often only available in discrete form [40].
Three resulting discrete-time integration issues must, however, be addressed before any
bene"t of speeding-up can be fully realized. The "rst problemwith discrete random histories
arises because sampling-rate and step size are intrinsically linked. Local step-size control is
therefore not possible, since this would cause a local change in excitation intensity,
ruling-out the use of Gaussian quadrature in Duhamel integration, or variable time-step
ODE solvers [37]. The second problem arises because it is impossible to obtain exact
derivatives of a discrete random process, and therefore the accuracy of higher order
integration methods always remains uncertain. And third, since non-stationary prediction
with very broadband excitation, often requires extremely high sampling rate, the cut-o!
frequency must be considered more carefully than for stationary simulation. The stationary
approach used in reference [41] for example, is not appropriate, but neither are
sophisticated in"nite-bandwidth algorithms [42] needed, since the excitation will ultimately
always be band-limited. These di$culties justify the creation of a well-understood
time-domainmethod for computing non-stationary histories of single modal equations with
discrete random excitation. This would be useful for displacement prediction if it
could (1) maintain accuracy in amplitude and phase over long durations, (2) exploit
excitation quiet periods, and (3) could very e$ciently focus on &&far-future'' sections of
a simulation.

In this paper, a new time-domain approach is developed for computing displacement
histories of single linear oscillators with arbitrarily light damping and ultra-high-bandwidth
discrete forcing. The main objective is to create a fast method to meet the three requirements
(1}3) whilst retaining full excitation bandwidth. Initially, several response methods are
examined, and the importance of cut-o! frequency demonstrated. The Euler}Maclaurin
summation formula is then used for truncation error analysis arising within a convolution
integration approach to obtain individual response transitions. This is used to establish the
apparent &&worst'', and &&best'', choice of transition length. Errors arising at both the &&worst''
transition length (namely the integration step size ��), and at the &&best'' (an integer multiple
of the damped natural period) are examined in detail within sections 4 and 5, culminating in
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the creation of an optimum integration scheme. Multi-transition error propagation for
these two cases is examined in section 6. In section 7, an adaptive Chebychev polynomial
boundary-value solution for constructing detailed histories is developed for use with the
optimum integration scheme. A fast algorithm is given in section 8 and compared with two
independent solution methods to establish its e$ciency for oscillator response history
prediction involving intermittent discrete random forcing with quiet periods, and for
&&far-future'' response prediction. The method is then demonstrated in a Monte Carlo
approach to non-stationary density estimation with general forcing.

2. RESPONSE HISTORY COMPUTATION: VERY LIGHTLY DAMPED OSCILLATORS

In developing a fast time-domain method, attention is focused on an m.d.o.f. normal
mode model
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P0 is how the forced modal equations can

be solved e$ciently in the time-domain, when the modal excitation functions are either
continuous or intermittent broadband random noise up to 20 kHz, where, in particular,
only the "nal stages of a long simulation are of interest. Before developing a new
time-domain solution approach to this problem in sections 3 and 5, via an explicit
numerical Duhamel approach, state transition equations are presented, and the
problem with convolution via FFT is highlighted as �

�
P0. Then a Laplace

transform/IFFT approach is developed and used to show the importance of bandwidth
cut-o! frequency for transient responses. (A list of symbol de"nitions is given in
Appendix A.)

2.1. LINEAR STATE TRANSITION EQUATIONS FOR SECOND ORDER OSCILLATORS

The initial-value problem associated with modal equation (2), can be put in state-space
form,
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where x
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where the individual state transition functions are de"ned as
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The function h (t), appearing in equations (8) and (10), is the impulse response function, and
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are complex conjugate roots of the characteristic equation, namely

	
�
"!�

�
�

��
#j�

��
�1!��

�
, (11)

	
�
"!�

�
�

��
!j�

��
�1!��

�
. (12)

The convolution integrals in equations (5) and (6) can be obtained explicitly in many
di!erent ways*here both the discrete Fourier transform and the discrete Laplace
transform approaches are examined.

2.2. CONVOLUTION VIA FOURIER TRANSFORM USING FFT

Displacement prediction over a single transition using equation (5), can be obtained via
superposition using the complex frequency response function H( j�) associated with
equation (2), and the excitation Fourier transform Z
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( j�). The complex response Z
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( j�) is

then given by
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(t) can be obtained by inverse Fourier transform. For
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Figure 1. Oscillator excitation and displacement response to modulated sinewave input obtained via frequency-
domain convolution using FFT: (a) �"0)01 (1%); (b) �"0)0001 (0)01%).
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very broadband excitation and very light dampingmeans that an extremely large number of
discrete samples is needed to maintain accuracy. For example, a system requiring
f
	
�

"20 kHz, and ¹
	
�

"200 s, which also requires ¹
�
�

"10¹
	
�

, will need n"10

discrete points*this can create major storage and computational problems. Figure 1(a)
shows the predicted displacement of a transiently forced system obtained by FFT for
�
�
"0)01 (1%) with appropriate choices of ¹

	
�
and ¹

�
�
. Figure 1(b) shows the

corresponding prediction for �
�
"0)0001 (0)01%) using the same value of ¹

�
�
2the

predicted displacement is in error by a factor of 10 and requires more than 100-fold increase
in computation to obtain an accurate displacement response. This shows-up a limitation
with the FFT approach. Another is that FFT cannot exploit excitation quiet periods, since
the same computational demand is required, even though at certain times there may be zero
input in the time domain. A time-domain solution better suited to take advantage of quiet
periods is addressed in sections 3 and 5.
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2.3. DIRECT SOLUTION VIA LAPLACE TRANSFORM AND IFFT

The solution to equation (2) can also be obtained directly via Laplace transform using
a complex Fourier series representation of the excitation Q in equation (2) in the form
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By setting, for convenience, the initial conditions to zero, the Laplace transform of equation
(14) expanded into partial fractions, gives an s-domain equation
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which on transforming back to the time-domain (and with reintroduction of t
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where the coe$cients are
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Although the last summation in equation (16) can be computed by using an IFFT, the entire
equation in this &&fast'' Laplace solution is in general much slower computationally than the
conventional discrete FFT approach of section 2.2 except when damping tends to zero.

For computations involving long durations, both FFT and discrete Laplace solution can
be broken down into subsections by using multiple transitions where the solution is
obtained via successive transitions using equations (5) and (6). Multiple transitions involve
propagation of both displacement and velocity*it will be shown in section 3 that the use
of numerical integration for computation of velocity in single transitions can be very



Figure 2. Displacement prediction: zero-padding requirements in Laplace/IFFT method. Single cycle
compared with multiple cycle prediction for di!erentiated (band-limited) white-noise excitation: (a) without zero
padding; (b) with zero padding before and after predicted single cycle.
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inaccurate when used with discrete random excitation. But it should also be noted that the
use of subsectioning in the direct FFT approach or the Laplace/IFFT solution requires
appropriate zero padding at the front and rear of each subsection [37]. Figure 2(a) for
example, shows the e!ect of not using zero padding for an oscillator with 0)1% critical
damping starting from zero initial conditions driven by (frequency domain) di!erentiated
discrete white noise (the use of which is justi"ed in section 2.4). Figure 2(a) shows four cycles
of prediction when using the Laplace/IFFT method, plus just one cycle obtained when
using a subsection of the same excitation. Clearly, there is a huge discrepancy between the
prediction of the "rst cycle. Figure 2(b) shows a corresponding prediction when both the
four-cycle section of the excitation, and the one-cycle subsection, are both zero-padded by
one cycle at the front and rear.

2.4. BANDWIDTH REQUIREMENTS FOR PREDICTION OF NON-STATIONARY HISTORIES

For stationary oscillator response prediction, the bandwidth cut-o! for light damping
normally need only be chosen at several times the resonant frequency. A potentially
important aliasing issue concerns the corresponding cut-o! frequency for transient
responses, since this has important implications for discretization in general, and for
numerical integration in particular. This is demonstrated for an oscillator with 100 Hz
natural frequency and 0)1% damping, driven by white noise where the response is obtained
via a partial summation in equation (16). Figure 3(a) shows one cycle of the partial
summation as an increasing number of harmonics are included, compared with the solution
obtained using a bandwidth of 51 kHz. This shows that convergence is rather slow,
requiring around 100 harmonics. The Laplace/IFFT solution can also be used to
demonstrate this aliasing*two cases are now considered. The e!ect of excitation "ltering is
examined for the same oscillator driven by (1) white noise, and (2) derivative noise.
Derivative noise is generated here and elsewhere, by processing discrete white noise in the
frequency domain via FFT, and is used merely to emulate the e!ect of using a low cut-o!
frequency for non-white excitation such as in prematurely truncating a jet noise spectrum
[7]. Figure 3(b) shows for discrete white noise excitation, a section of the transient response
of the oscillator, driven by discrete white noise both with- and without "ltering. In the case



Figure 3. Bandwidth requirements for transient response prediction: (a) partial harmonic sums in Laplace
solution for white noise excitation. *, response to un"ltered- and } } } }, response to low-pass "ltered random
excitation; (b) white noise (20% passband); (c) di!erentiated noise (95% passband).
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without "ltering, the bandwidth is chosen at 51 kHz, and for the "ltered input, frequency
domain "ltering removes 80% of the excitation frequency content, reducing the cut-o!
frequency to 10)2 kHz. Figure 3(b) shows that in this example changes in the cut-o!
frequency of more than 100 times the natural frequency, produce a di!erence in the
transient response. Figure 3(c) shows the same comparison for (non-white) discrete
derivative noise (obtained via frequency domain processing) in which only 5% "ltering is
used to reduce the bandwidth cut-o! from 51 to 48)45 kHz. Figure 4(a) shows a sample of
the excitation, and Figures 4(b) and 4(c), respectively, show the Fourier sine and cosine
coe$cients of the un"ltered and "ltered section. Figure 3(c) clearly shows that for an
extreme case like derivative noise, even a very small change in cut-o! frequency, around 500
times the natural frequency, will produce a totally di!erent transient response. In order to
clearly and accurately simulate transient responses of a linear oscillator with general types
of discrete non-white excitation, the cut-o! frequency needs to be selected much greater
than the resonant frequency. Indeed, it would appear that the cut-o! frequency should be
chosen at least up to the frequency where excitation energy has e!ectively dropped to zero.
For transient response prediction, for example, involving jet noise [7] with screech tones,
safe discretization will involve very high frequency which can be a problem for time-domain
integration unless truncation errors are reduced. These are now examined in detail for
single-state transitions via the Euler}Maclaurin summation formula.



Figure 4. Di!erentiated noise samples: (a) section of excitation; (b) Fourier series components; (c) un"ltered
excitation; partially "ltered excitation.
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3. TRUNCATION ERROR DEPENDENCE ON TRANSITION INTERVAL CHOICE

To obtain modal displacement and velocity components in the time domain via state
transition equations (5) and (6), the following convolution integrals must be obtained
explicitly:
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Numerical convolutions (21) and (22) can be evaluated in the time-domain, by using one of
the many numerical integration schemes [37]*this is usually an extremely slow process.
Furthermore, only "xed time-step schemes should be used at a high sampling rate, if the
aliasing problems described in section 2.4 are to be totally avoided*this leads to a very
slow integration with potentially serious truncation error problems for the velocity
equation (6). But when only displacement predictions are needed, at a small number of
discrete times, then direct convolution can in fact turn out to be much faster than discrete
Laplace methods. It is the construction of the detailed solution at very small time steps that
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proves to be the computationally expensive part. Now, in using "xed step numerical
integration schemes in transition equations (5) and (6), there are actually four ways in which
truncation errors can arise. These are the local or global truncation errors associated with
(1) a single transition of length �� involving a single-step integration of step length ��,
(2) a single transition of length n�� involving a multi-step integration of step length ��,
(3) multi-transitions involving a single-step integration of step length ��, (4) multi-
transitions involving multi-step integrations of step length ��.

In this section, the "rst step is made by identifying an accurate and e$cient numerical
integrationmethod with a small truncation error, for use with discrete random forcing. This
is done by initially examining for case (2) how truncation errors depend on the choice of
transition interval. First, the Euler}Maclaurin summation formula (a generalization of the
conventional trapezoidal integration rule) is stated, and higher order error terms identi"ed.
Truncation errors in single transitions are then examined, beginning with the derivation of
an explicit r.m.s. approximation for use with discrete random excitation*i.e., the usual
form of numerical Duhamel integration. This is used to establish whether there is
a preferred transition interval.

Now, in selecting a particular integration scheme, since the magnitude of discrete samples
of white noise for example, is linked to the step size ��, as ��P0, the excitation process
becomes increasingly irregular with a higher amplitude, such that conventional Taylor
series approximations converge slower than normal, if at all. The Euler}Maclaurin
summation formula (EMSF) allows this covergence behaviour to be examined in detail for
discrete random excitation. Moreover, it forms the way in which most Taylor-series-based
higher order methods are generated [37], but it is also noted that higher order does not
necessarily translate into higher accuracy. The EMSF proves very appropriate here for
examining truncation errors with discrete random noise excitation to enable the most
e$cient scheme to be identi"ed. This rule is used to obtain the de"nite integral of some
function f, expressed in the form [37]
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where the "xed steps are of length ��, and the truncation error is de"ned in terms of
a (generally divergent) asymptotic expansion, where the coe$cients in the series are
Bernoulli numbers B
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where, after the "rst "ve coe$cients, the numerator starts to grow much more rapidly than
the denominator causing divergence. When the standard trapezoidal rule is used (i.e., the
"rst summation in equation (23)) the truncation error for an entire interval t!t
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and from the bounding properties of an asymptotic expansion, the magnitude of the error
for the series truncated after a certain number of terms is always less than twice the
magnitude of the "rst term omitted. This property enables the truncation error for an
oscillator with discrete random forcing to be examined, when integrating transition
equations (5) and (6).

3.1. RELATIVE TRUNCATION ERROR ESTIMATION FOR SINGLE TRANSITIONS

To examine explicitly the magnitude of the truncation errors when using the "rst
summation in equation (23) (i.e., the standard trapezoidal rule) applied to discrete random
excitation, use is made of the ratio

r
�
"

e
��	���
I
��	���

"

r.m.s. error in [t
�
, t]

r.m.s. magnitude of integral from [t
�
, t]

. (26)

This ratio is used to establish statistically the relative importance of including higher terms
in equation (23) when the oscillator is driven by band-limited white noise. A theoretical
estimate of the "rst term error ratio for displacement will now be derived, and compared
with numerical simulations of the ratio (26) involving "rst and second term errors for both
displacement and velocity. This will require time derivatives of the kernel functions G

�
and

G
�
in equations (21) and (22). To avoid confusion, these are shown for the displacement

equation (21) by writing

f (�)"G
�
(t, �)"h (t, �)Q (�). (27)

By treating t as a constant and noting that �h(t!�)/��"!hQ (t!�), the required
derivatives are

f �(�)"h (t!�)QQ (�)!hQ (t!�)Q(�), (28)

f �(�)"hG (t!�)Q (�)!2hQ (t!�)QQ (�)#h (t!�)QG (�), (29)

f ���(�)"h
2

(t!�)Q(�)#3hG (t!�)QQ (�)!3hQ (t!�)QG (�)#h (t!�)Q
2

(�) (30)

and a similar set of derivatives for the velocity equation (22), which can be obtained from the
set (27)} (30) by replacing h (t!�) by hQ (t!�), hQ (t!�) by hG (t!�), etc. The theoretical
approximation for the "rst term displacement ratio can be obtained by using h (t) (equation
(8)) for �

�
P0. For this case, the "rst error term in equation (25) is

e
�
"!

(��)�
12

[sin(�
�
t)[QQ (t) cos(�

�
t)!Q(t)�

�
sin(�

�
t)!QQ (t

�
) cos(�

�
t
�
)#Q(t

�
)�

�
sin(�

�
t
�
)]

!cos�
�
t[QQ (t) sin(�

�
t)#Q(t)�

�
cos(�

�
t)]!QQ (t

�
) sin(�

�
t
�
)!Q (t

�
)�

�
cos(�

�
t
�
)]

(31)

which simpli"es to

e
�
"!

(��)�
12�

�

[QQ (t
�
) sin(�

�
(t
�
!t))#Q(t

�
)�

�
cos �

�
(t!t

�
)!�

�
Q (t)]. (32)
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Specializing equation (23) for use with white noise excitation, it is necessary to establish
equivalent derivative properties of band-limited discrete white noise. Now, in generating
discrete broadband white-noise samples from discrete random numbers Z

�
with standard

deviation 

�
, for any stationary process X(t), the power spectrum of the nth derivative

(written X���(t)), satis"es the relationship S
����(�)"(2��)��S

�
(�), where the constant

(band-limitedwhite noise) spectral level is S
�
"
�

�
. Therefore, it follows that samples=

��
, of

a continuous band-limited process=
�
(t), constructed at discrete times t

�
, can be obtained

directly as

=
��
"Z

�
/��t . (33)

Moreover, a process with the samemean-square properties as the derivative process=Q
��
, can

be obtained directly from the discrete samples (of a surrogate process) as

=Q
��
,

�

�3
Z

�
/(�t)	��, (34)

where the ,sign is used to indicate that these are only equivalent discrete processes in
a mean square sense*autocovariance properties will however be di!erent. Similarly,
a process with the same mean square properties as the second derivative process=G

��
, can

also be obtained directly from the discrete samples, namely,

=G
��
,

��

�5
Z

�
/(�t)���. (35)

Therefore, the r.m.s. magnitude of the error based on one term in equation (25), assuming
discrete random numbers for Q(t)"=

�
(t), and using equations (33) and (34), is

e
���	���

"



�
(��)���
12�

�
�
��

3
(sin �

�
(t!t

�
))�#(�

�
��)� ((cos �

�
(t!t

�
))�#1) �

���
. (36)

The r.m.s. value of the standard trapezoidal approximation of the integral ("rst term in
equation (23)) is

I
��	���

"

�
(��)��� �

h (t!t
�
)�

4
#h (t!(t

�
#��))�#h (t!(t

�
#2��))�#2#

h (0)�

4 �
���

(37)

and therefore the particular form of r.m.s. ratio (26) is

r
��

"

1

12�
�

�
��

3
(sin�

�
(t!t

�
))�#(�

�
��)� [(cos �

�
(t!t

�
))�#1] �

h (t!t
�
)�

4
#h (t!(t

�
#��))�#h (t!(t

�
#2��))�#2#

h (0)�

4

���

. (38)

Figure 5(a) shows 20 simulated displacement sample functions of the integral in equation
(21) for a system with a damped natural frequency �

�
"1 rad/s and �"10�
, driven by

band-limited white noise obtained from the "rst term in equation (23), integrating from
t
�
"0 to arbitrary time t, shown as a function of the fraction of the oscillator-damped



Figure 5. Simulated displacement ensemble for white-noise excitation. (a) Transition integral histories;
(b) O(����f �) displacement truncation error histories.

Figure 6. Truncation error ratios for displacement response to white-noise excitation. (a) Estimated O (����f �)
error ratio compared with theory; (b) *, estimated O (����f �) and } } } }, O(����f ���) error ratios.
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natural period �
�
(t!t

�
)/(2�). The time step chosen is ��"0)05 s. Figure 5(b) shows

sample functions of the corresponding O(����f �) truncation error, obtained by using the
"rst term in equation (25). Figure 6(a) shows the estimated r.m.s. ratio using the ensemble of
error sample functions and integrals shown in Figures 5(a) and 5(b), compared to the
theoretical relative integration error obtained by using equation (38). This comparison
clearly shows that equation (38) gives a very good estimate of the O(����f �) error and
therefore from the asymptotic series properties for equation (23), and also gives a practical
upper bound on the total relative truncation error. Both theory and simulation also show
two important things: "rst, that the largest relative error arising in the use of equation (23)
occurs as t!t

�
P0, and second, that the relative error is a minimum for any integer

multiple of the damped natural period, i.e., at t!t
�
"k�/�

�
for k"1, 2,2. These "ndings

will be examined in detail in sections 4 and 5 respectively. Figure 6(b) shows the same
relative truncation error in displacement, plotted on a log-scale and separated into its
O(����f �) and O(����f ���) contributions. The initial implications of this are that any



Figure 7. Simulated velocity ensemble for white noise excitation. (a) Velocity transition integral histories;
(b) O(����f �) velocity truncation error histories.

Figure 8. Truncation error ratios for velocity response to white-noise excitation. (a) Estimated O (����f �) error
ratio; (b) *, estimated O (����f �) and } }} }, O (����f ���) velocity error ratios.
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non-zero integer value of k would seem to be appropriate to ensure minimum O(����f �)
error in equation (21) using standard trapezoidal integration. But there are two greater
advantages derived from this choice, which can be identi"ed when the velocity error is
examined, and second, when the properties of the O(����f �) term are examined in detail.
Before then, Figures 7(a), 7(b), 8(a) and 8(b) show velocity information similar to that
shown in Figures 5(a)}6(b), resulting from the use of equation (22). Figure 7(b) in particular,
shows that in integrating the velocity equation, there is no obvious preferred transition
interval. Indeed, it would appear that unless the O(����f �) velocity error is removed, then
a large velocity error will be propagated. As a matter of fact when t!t

�
"k�/�

�
for integer

k, the �
�
function in equation (5) is zero, so it is possible to obtain displacement transitions

without the need to propagate velocity information. Equation (6) is therefore redundant.
But the question then for broadband excitation is how large should the integer k be for
acceptable errors in "nite transitions, and second how is it possible, without velocity
information, to generate accurate, detailed displacement histories within "nite intervals
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(t
�
#k�/�

�
)(t((t

�
#(k#1)�/�

�
). The second question will be addressed in section 7,

but the "rst question will be answered in the following sections 4}6, by examining
truncation errors for the categories de"ned at the beginning of this section, i.e., case (1), and
special case (2) when transitions are integer multiples of the damped natural period.

4. TRUNCATION ERROR ANALYSIS FOR SINGLE-STEP TRANSITIONS OF LENGTH ��

Figure 6(a) shows that as the transition interval t!t
�
P0 the displacement error ratio

r
��
(as predicted by equation (38)) grows to its worst case, i.e., a seemingly large value. Figure

8(a) also shows similar behaviour for the velocity integral. Both "ndings suggest that for
trapezoidal integration of equations (5) and (6) with discrete band-limited white noise
excitation, when a single transition interval is chosen equal to the integration step length ��,
there will be a convergence problem as ��P0. This is case (1) as de"ned at the beginning of
section 3, and the purpose of this section is to examine, for this case, the properties of the
truncation error in more detail. This is approached by constructing both truncation error
bounds and explicit relative r.m.s. estimates to con"rm the rates of convergence in
trapezoidal integration of equations (21) and (22). This may seemingly represent a slight
digression from the development of an optimal integration scheme at the best transition
interval (as completed in section 5), but it is important because it provides an alternative
time-domain state-transition algorithm, against which propagation errors associated with
multi-transitions can be compared in section 6.

In conventional trapezoidal integration with n steps of size ��, error bounds are well
known, i.e., given by the magnitude of the second derivative of the integrand within the
interval t

�
(�(t, i.e.,

e
�����

"

n(��)	
12

Max �GG � (39)

namely in terms of the second derivatives with respect to � of the integrands G
�
and G

�
in

equations (21) and (22). From equation (29), and the corresponding version for velocity, it
follows that these second derivatives are

GG
�
(�)"QG (�)H

�
(�)!2QQ (�)HQ

�
(�)#Q (�)HG

�
(�), (40)

GG
�
(�)"QG (�)H

�
(�)!2QQ (�)HQ

�
(�)#Q (�)HG

�
(�), (41)

where

H
�
(�),h (t!�) (42)

and

H
�
(�),hQ (t!�). (43)

Now for case (1) with n"1, i.e., a single transition from t
�
to t, such that ��

�
"t!�, then

GG
�
(�)"QG (�) h (��

�
)!2QQ (�) hQ (��

�
)#Q(�) hG (��

�
), (44)

GG
�
(�)"QG (�) hQ (��

�
)!2QQ (�) hG (��

�
)#Q(�) h

2

(��
�
), (45)
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where

hG (t)"
1

(	
�
!	

�
)
[	�

�
e���!	�

�
e���], (46)

h
2

(t)"
1

(	
�
!	

�
)
[		

�
e���!		

�
e���]. (47)

When the step size ��"t!t
�
, and the increment ��

�
"t!� always remains small, then

"rst order approximations to the IRF (8) and its derivatives are appropriate, namely

h (��
�
)"��

�
#O(���

�
), (48)

hQ (��
�
)"1#(	

�
#	

�
)��

�
#O(���

�
), (49)

hG (��
�
)"(	

�
#	

�
)#�
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�
	
�
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�
���

�
#O (���

�
), (50)

h
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�
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�
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�
)
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�
) �1#�

	�
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!	�
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�
!		

�
���

��#O(���
�
). (51)

If Q
�
"=

��
from equations (33)} (35), then the magnitudes of the second derivatives

appropriate for the integrands in equations (21) and (22) with integration time-step �� are
maximized when ��

�
"��, and therefore the errors are bounded by the inequalities

�GG
�
(�

�
) �)�

��

�5
Z

��
(��)�	���#�!
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where a distinction has been made between the di!erent discrete samplesZ
��
, Z

��
, Z

	�
of the

same process Z
�
occurring at discrete time �

�
. Now, since

GG
�
"O(���	��) and GG

�
"O(������), (54, 55)

it can be seen that ���	�� and ������ terms dominate in GG
�
(�

�
) and GG

�
(�

�
); therefore for

a single step ��, good approximations to the upper bound (39) for each respective
integration error are

e
������

+0)52��	�� max �Z
�
�, e

������
+0)37����� max �Z

�
�. (56, 57)

These estimates initially suggest that for a case (1) scheme, the absolute truncation error
terms in both state transition equations (21) and (22) converge, but the velocity predictions
via equation (6), converge at a much slower rate than the displacement predictions via
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equation (5). However, if attention is focused on the displacement errors, the "rst
summation in equation (37) for discrete band-limited white noise excitation reduces to

I
��	���

+



�
(��)	��
2

. (58)

This term is of the same order as equation (56), and would suggest that for displacement
prediction (in terms of relative truncation error), the scheme will never converge. Further
support for this suggestion initially comes from the displacement r.m.s. error. Equation (26)
can be used to obtain an explicit r.m.s. error ratio r

��
for a single transition t!t

�
"��, i.e.,

equal to a single integration step of length ��. Approximations (48) and (49) imply that
h(��)+�� and hQ (��)+1, and by using equation (58), the special case of equation (32)
simpli"es to

e
�
"

(��)�
12

[[h(0)QQ (t)!hQ (0)Q(t)]![h (��)QQ (t
�
)!hQ (��)Q(t

�
)]], (59)

which on using equations (33), (34), (48) and (49), gives an approximate r.m.s. value,

e
���	���

"
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(��)	��
12 �2#

��

3 �
���

(60)

and a corresponding special version of ratio (38)

r
��

"

1

3�2 �1#

��

6 �
���

"0)384. (61)

This result is con"rmed in Figure 6(a) and shows more explicitly that for case (1) transitions,
the displacement error ratio r

��
for a band-limited (discrete) white-noise-driven oscillator,

tends to a constant and is therefore independent both of step size �� and damped natural
frequency �

�
. This adds further support to the suggestion that a simple recursive scheme

using equations (5), (6), and the "rst term in equation (23), would never converge as ��P0,
since the r.m.s. value of the "rst order error term in equation (23) would not diminish faster
than the r.m.s. of the two-term integral sum. Indeed, as ��P0 the "rst order r.m.s. error
could be expressed explicitly in terms of the sum r.m.s., namely e

��	���
"0)384I

��	���
. This

would seem to pose a serious limitation for case (1)-based integration. However, this is
a mean square error analysis for single step integration over a single transition. A closer
look at how the error propagates after many steps is more important*and for this,
covariance information is needed. Some insight into the covariance properties of the
displacement error can be obtained by writing equation (23) for t!t

�
"��, as

I"
(��)
2

[ f (t
�
)#f (t)]!

(��)�
12

[ f � (t)!f �(t
�
)]#O(����f ���), (62)

which simpli"es to

I"
(��)
2

[h(��)Q(t
�
)]!

(��)�
12

[!hQ (0)Q(t)![h(��)QQ (t
�
)!hQ (��)Q(t

�
)]]#O(����f ���),

(63)
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and noting that

hQ (0)Q(t)!hQ (��)Q(t
�
)+Q(t)!Q(t

�
)+QQ (t

�
)�� (64)

gives, upon using approximations (48) and (49) for h and hQ ,

I+
(��)�
2

[Q(t
�
)]#

(��)	
6

[QQ (t
�
)]#O(����f ���). (65)

Equation (65) shows that the "rst error term in standard trapezoidal integration will
actually behave in proportion to the derivative of the excitation process. Since the power
spectrum of a derivative process will behave like ��, most of the energy in the error will be
located at high frequency. Therefore, even though the r.m.s. value of the error may be
relatively large, all of the &&power'' in the integration error, will be concentrated at high
frequency, well above the system natural frequency. A similar conclusion can be reached for
the velocity errors. The propagation of these errors over multiple transitions, can in fact be
understood in terms of moving average "lters, which have their own frequency response
characteristic capable of error "ltering. Therefore, error propagation over multiple
tranistions will be examined in section 6 for both this scheme and the optimum scheme,
described in section 5.

5. AN OPTIMUM FIXED-STEP INTEGRATION SCHEME

Turning attention now to the most important special case, where the transition interval is
selected to be an integer multiple of the damped natural period t!t

�
"k�/�

�
, it was

identi"ed in section 3 that for this case the �
�
transition function in equation (5) is zero and

hence transitions can be made without velocity information. This signi"cantly reduces the
computation required in each transition. But a more important realization is that the
O(����f �) truncation error can be evaluatedwith minimal e!ort. To explain and justify this,
the integral in any "nite transition t!t

�
can be estimated by using the "rst two terms of

equation (23), i.e.,

I"(��) �
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#2#f
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2
f
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B
�
(��)�
2!

[ f �


!f �

�
]#O(���) (66)

and noting from equations (27) and (28), in general, for arbitrary single transitions of
multiple steps ��, to evaluate the O(����f �) truncation error, the di!erentiated excitation
QQ (t) is needed at each transition. In case (1) of section 4 for example, error reduction in both
displacement and velocity integrals (5) and (6), is needed after each small transition. This
would lead to a very costly computation involving numerical di!erentiation of a discrete
random process*a highly undesirable operation. However, for the special case where the
transition is t!t

�
"k�/�

�
, since h (0)"0 and h(k�/�

�
)"0, the transition integral in

equation (5) can be obtained from

I
���

"(��) �
1

2
f
�
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2
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�!

(��)�
12

[hQ (k�/�
�
)Q(t

�
)!hQ (0)Q(t)]

#O(����f ���). (67)

Therefore, to evaluate the O(����f �) term in equation (66), equation (67) shows the
di!erentiation of the excitation is not required* only numerical values of the excitation at
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the beginning, and end, of the transition. Since the transition t!t
�
will be many multiples

of �� (possibly up to 1000 times), correction involves an insigni"cant amount of
computation compared with the "rst summation. The asymptotic expansion properties of
equation (23), enable theO(����f ���) error to be obtained by using the numerical integration
formula (67) as

e+
(��)�
720

[ f ���(t)!f ���(t
�
)]. (68)

This requires the third derivative for the excitation; consequently, only an approximate
prediction of O(����f ���) can in general be expected. However, it is now shown that by
evaluating the leading O (����f �) error term rather than eliminating it, this simple
equal-weighted O(����f ���) scheme has highest accuracy compared with all other orders.
The basis for this assertion is achieved by writing the EMSF in the form
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where the "rst three error terms are written explicitly in the form O ((��)��f �)"
![(��)�/12][ f �
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). Now, by using equation (69), Simpson's rule can be
generated by writing down I

�����
in terms of alternate ordinates and then by eliminating the

O(����f �) term: i.e.,
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and, by using equations (69) and (70), the integral can be written as
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i.e., the usual 1-4-2-4-2 Simpson's rule. The O(����f ���) scheme I
���

given by equation (67),
can actually be combined with Simpson's rule to eliminate the leading O(����f ���) term, to
create the following O(��
�f ���) scheme:
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�f ���)#2. (72)

Since &&higher order'', does not necessarily translate into higher accuracy, the question for
discrete random excitation is, which of the four possibilities will always be most accurate,
namely when (1) equation (66) is used with an arbitrary transition, as opposed to
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a transition equal to an integer multiple of the damped period, without the O(����f �) term
being evaluated, (2) equation (67) is used for a transition equal to an integer multiple of the
damped period, i.e., where theO(����f �) term is evaluated, (3) Simpson's rule (equation (71))
is used, and (4) the O(��
�f ���) scheme (equation (72)) is used.

These questions can be answered de"nitively "rst by using equations (28}30) for the
derivatives needed in the leading error terms in the EMSF equation (23). Now at transitions
equal to an integer multiple of the damped period, h(0)"h(k�/�

�
)"0 and hQ (0)"hQ (k�/�

�
)

+1, the corresponding derivative terms will be dominated by the magnitude of

d�����Q/dt���. Then by using equations (33}35) and noting that d�Q/dt�,(��/�9)
[Z

�
/(��)���], the r.m.s. error terms will be closely approximated by
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and from the summation in equation (37) for �
�
"0, I

��	���
"


�
�k���	��

�
(where k refers to

integer or quarter fractions of the damped period), the r.m.s. ratios corresponding to
equation (38) will be
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where the su$ces (��)�, (��)�, and (��)
 in equation (74) correspond for simplicity to the
O((��)��f �), O((��)��f ���), and O((��)
�f ���) terms respectively. When the transition is equal
to an integer multiple of the damped period, then

[e���/e���]��	���
"4)53, (75)

and

�
e���

e��
���	���

"3)42 (76)

independently of �� and �
�
. By contrast, for an arbitrary transition, the derivative terms in

equations (28}30) will be maximized when leading terms h (t!�) (d�Q/dt�) are dominant:
i.e., when (t!t

�
)"2k�/�

�
for k"	

�
, k"�

�
, etc. Therefore, an estimate for the worst case for

ratio equation (38), is

r
�

Q� dominant

"

�2��
�
��

18
. (77)

To give some intermediate con"rmation of these ratios for transitions equal to an integer
multiple of the damped period, with 


�
"1, �t"0)05, �

�
"1 rad/s and k"1 for example,

the "rst two ratio estimates give r���"7)43�10�� and r���"1)64�10��, in very close
agreement with Figure 6(a). The value for the third ratio is r��
"4)79�10��. For the same
parameters, r

�Q� dominant
"0)022 after 	

�
of the "rst cycle, as predicted in Figure 6(a) and again

shows very good agreement with the estimated value. Now, the answer to question (1) posed
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earlier can be obtained from equations (74a) and (77) for the "rst cycle, which gives the ratio
r
�Q� dominant� r

�Q dominant
"�2�/3�

�
�� . Since in any integration involving N steps per cycle,

increasingly small �� must be chosen as �
�
increases, and since the damped period

¹"2�/�
�
, and ¹/��"2�/�

�
��"N�1, then r

�Q� dominant� r
�Q dominant

"N/3. The typical range is

is 50(N(1000, depending on the required bandwidth (as discussed in section 2). Therefore
under general conditions r

�Q� dominant
� r

�Q dominant
con"rming that equation (69) used with

a transition interval is equal to an integer multiple of the period, will always give lower
truncation error than for an arbitrary transition. The answer to question (2) is given by
equation (75) at a transition equal to an integer multiple of the period. Evaluation of the
leading O(����f �) will always reduce the error to the leading O(����f ���) term, which is
always smaller by a factor"4)53. The answer to question (3) is that at the optimal interval,
Simpson's rule will increase the O (����f ���) error by a factor of four times, and the
O(��
�f ���) error by a factor of 20 times, that of equation (69). The elimination of the
O(����f �) error term used to create Simpson's rule is therefore of no bene"t, because the
O(����f ���) error has been increased to the same magnitude of the term eliminated. Finally,
the answer to question (4) is that use of the O(��
�f ���) scheme suggested by equation (72)
would be of no bene"t because the O(��
�f ���) error would be increased by a factor of 16/5,
which according to equation (76), would make this term as large as the O (����f ���) error
term that has been eliminated and would therefore be of no bene"t either. The conclusion
then is that the simplest scheme equation (67) in which the O(����f �) term is evaluated, is
optimal in the sense of having maximum accuracy for minimum computational e!ort. In
summary, for a single transition integration, the overall error reduction obtained when
using equation (67) as opposed to arbitrary trapezoidal integration, is given by the ratio
r
�Q� dominant�r�����

"10�10N/��"3)2N. This ratio varies between 150 and 3000 depending on

bandwidth requirements. Figure 6(b), for example, shows this ratio is well over 100.

6. TRUNCATION ERROR PROPAGATION IN MULTIPLE TRANSITIONS

For the case (1) scheme of section 4, involving single transitions with single step
integrations, it has been shown that explicit estimates of the localO(����f �) andO(����f ���)
errors, can in principle be obtained directly by using both terms in equation (25). By
contrast, for the special scheme of section 5, involving single transitions equal to an integer
multiple of the damped natural period, theO(����f ���) truncation error in equation (67), can
be approximated from equation (68). Interest now focuses on using these error estimates to
obtain explicit global truncation errors after many transitions. Error propagation for these
two cases can be examined by writing the explicit state-transition equation (4) as a linear
di!erence equation

x
� 

(t)"Ax

� 
��
#I

� 
��
, (78)

where x
� 

(t), is the state vector after N transitions, A is the 2�2 state transition matrix, and

I
� 
��

is the contribution to the integral at theNth step. By introducing a truncation error at
each step, equation (78) can be augmented and written explicitly as

x
� 

(t)#�

� �� 

"A
��(I

� �
#�

� �
)#A
��(I

� �
#�

� �
)#2#(I

� 
��
#�

� 
��
), (79)

where �
� 
��

is theNth step truncation error and �
�
x
� 

is the propagated truncation error in the

state vector. The initial state has for simplicity been assumed to be zero. Linearity allows



Figure 9. White-noise-driven oscillator. (a) Excitation; (b) response via single-step transition method *,
compared with the use of optimum O (����f ���) integration scheme && ' ''.
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�
�
x
� 

to be written explicitly as

�
�
x
� 

"A
���

� �
#A
���

� �
#2#�

� 
��
. (80)

Since equation (80) is a moving average "lter, with discrete dynamic properties exactly the
same as the oscillator, error propagation depends on the frequency content of the error
process �

� 
��
. In other words, error energy well removed from resonance will be "ltered out

and will not propagate. This is precisely what is expected to happen for short duration
transitions equal to the trapezoidal step size �� as predicted by equation (65). Now for "nite
duration transitions, the per-step errors can be broken down by using equation (25) in "rst
order, second order terms, etc., and studied by using equation (80). Here, both "rst and
second order error propagation are considered, but to generate the error terms in equation
(23), it is necessary to obtain "rst, second, and third derivatives of the discrete excitation
process, namely QQ , QG , and Q2, as required from equations (28)}(30) at respective transition
times �"t

�
and t for the two speci"c cases (1) t!t

�
"k�/�

�
and (2) t!t

�
"��. These

di!erentials can be obtained in the frequency domain by using FFT. Figure 9(a) shows
a discrete white noise excitation history applied to an oscillator with undamped natural
frequency of 100 Hz and 0)1% critical damping. In Figure 9(b), 20 cycles of displacement are
shown which have been predicted via a case (1) recursive scheme (i.e., equations (5) and (6)
using standard trapezoidal integration) with transition length t!t

�
"��"9)7656�

10�
 s, compared with a special case (2) scheme, using equation (67) with the same ��
predicting at discrete times equal to multiples of the damped period, shown by a && ' ''
symbol. Figure 10(a) shows total oscillator energy, and Figure 10(b) shows the magnitudes
of the O(����f �) plus O(����f ���) error terms for case (1) and the O(����f ���) error for
special case (2) both normalized by the total energy, corresponding to the information in
Figure 9(b). Figure 11(a) shows a discrete white noise history and Figure 11(b) a history of
the corresponding derivative (obtained in the frequency domain via FFT). Figure 11(c)
shows displacement information similar to Figure 9(b), but for derivative white noise
excitation. Figures 12(a) and 12(b) show corresponding energy and normalized errors.

Focusing on the error prediction in Figures 10(b) and 12(b), these con"rm that the
displacement errors obtained by using equation (67) are orders of magnitude smaller than



Figure 10. White-noise-driven oscillator. (a) Energy envelope; (b) absolute relative error for single-step
transition method* , compared with optimum O(����f ���) integration scheme && ' ''.

Figure 11. Di!erentiated white-noise-driven oscillator. (a) Original excitation; (b) excitation after
di!erentiation; (c) response via single-step transition method *, compared with the use of optimum O (����f ���)
integration scheme && ' ''.

658 J. F. DUNNE
the errors obtained from the case (1) scheme, for either band-limited discrete white noise, or
the much more computationally problematic derivative white noise. The CPU time
required for the case (1) scheme is several 100 times that required for equation (67). This
shows that even for extremely non-smooth band-limited excitation, it is possible to predict
displacement very accurately at discrete time equal to a damped natural period. However,
a way has to be found to e$ciently obtain the detailed displacement between these points at
very "ne discrete time steps ��. This detailed information is now approached by using
a Chebychev polynomial solution to equation (2).



Figure 12. Di!erentiated white-noise-driven oscillator. (a) Energy envelope; (b) absolute relative error for
single-step transition method *, compared with optimum O (����f ���) integration scheme && ' ''.
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7. SINGLE-CYCLE SOLUTION VIA CHEBYCHEV POLYNOMIAL APPROXIMATION

Equation (67) using just a single sweep integration can be used to e$ciently generate
a vector of accurate displacements q� , at integer multiples of the oscillator period say at
a vector of discrete times t� . By shifting the time axis and starting the integration (with
zero-padding) a fraction of a cycle early, it is also possible to use the same equation to
obtain a sequence of accurate displacements q	 at discrete time vector t	 . The question is
how can this be used to generate the detailed solution from the discrete values of the
excitation? To do this, a Chebychev boundary-value solution of equation (2) can be
exploited to give the detailed solution for any one cycle at any of the times in t� . This has the
advantage that the convergence criterion can be based on point values of the coe$cients.
A Chebychev polynomial approximation [37] to a continuous function is possible on the
interval [!1, 1] using the orthogonality property of Chebychev polynomials T

�
(t)"cos

(n arccos(t)) in the form

q(t)"
	
�
���

c
�
T

���
(t)!c

�
/2, (81)

where the continuous form of the orthogonality condition is

�
�

��

T
�
(t)T

�
(t)

�1!t�
dt"	

0 if iOj,

�/2 if i"jO0,

� if i"j"0.

(82)

Chebychev polynomials also satisfy the recurrence relationship T
���

(t)"2tT
�
(t)!T

���
(t)

for n*1 giving T
�
(t)"1, T

�
(t)"t, T

�
(t)"2t�!1, T

	
(t)"4t	!3t, etc. The coe$cients

c
�
are usually rapidly decreasing, and the error, which is spread out over [!1, 1], is

dominated by the magnitude of the term c
	��

T
	
(t). Since �T

	
(t)�)1, the error is indicated
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by the magnitude of the coe$cient c
	��

. This feature allows an adaptive solution to be
generated as explained shortly. The Chebychev polynomial expansions of the "rst
derivative of a continuous function can be expressed directly in terms of the expansion of
the function, namely

qR (t)"
	��
�
���

c�
�
T
���

(t)!c�
�
/2, (83)

where the coe$cients c�
�
of the "rst derivative can be obtained from the coe$cients c

�
by

using the relationship

c�
���

"c�
���

#2(i!1) c
�
, (84)

subject to initial condition c�
	��

"c�
	
"0, where i"m, m!1,2, 2. Similarly, the second

derivative can be expressed in the form

qK (t)"
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�
���

c�
�
T
���

(t)!c�
�
/2 (85)

with a similar coe$cient relationship,

c�
���

"c�
���

#2(i!1) c�
�
. (86)

To construct a Chebychev polynomial expansion of any function over an arbitrary interval
[a, b], the linear transformation to non-dimensional time, i.e.,

t�"
t!�

�
(b#a)

�
�
(b!a)

(87)

converts the interval from [a, b] to [!1, 1]. Equation (2) therefore transforms to
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#2�
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T
���

#��
��
q
�
"Q(t�), (88)

where T
���

"�
�
(b!a), i.e., the half-period. The coe$cient relationships (84) and (86) can be

written in matrix form as

c�"A
�
c�#B

�
c and c�"A

�
c�#B

�
c� , (89, 90)

where square matrices A
�
, B

�
, A

�
, and B

�
of dimension n�n, are, wherever necessary,

appropriately zero-padded. Equations (89) and (90) can be solved explicitly to give

c�"(I!A
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)��B

�
c"G

�
c (91)

and

c�"(I!A
�
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c . (92)



DISCRETE-TIME RANDOM-FORCED OSCILLATORS 661
Substitution of equations (81), (83) and (85) into equation (88) gives
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#��
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c
��"Q (t�). (93)

When equation (93) is multiplied by T
�
(t�) and integrated between !1 and #1, the

orthogonality property (82) gives

c"H��I
� �

(94)

where

H"(�/2) [G
�
G

�
#2�

�
�

��
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�
#��
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I] (95)

and

I
��

"�
�

��

Q(t)T
�
(t)

�1!t�
dt. (96)

To obtain a unique solution for the coe$cient vector c
�
for forced modal equation (2)

satisfying boundary conditions q (t���)"q�� and q (t�	�
)"q	�

, it is required that the bottom two
rows of matrix H be replaced by the equations

	
�
���

c
�
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���

(t��� )!c
�
/2"q�� (97)

and

	
�
���

c
�
T
���

(t�	�
)!c

�
/2"q	�

. (98)

Now, to create an adaptive scheme, it is necessary to obtain the inverse matrix H�� and
vector I

� ��
for increasing values of n until the coe$cient vector c

�
converges in some sense.

Inverse matrices H��, of increasing dimension, are needed for many possible values of n.
Provided the half-period T

���
does not change from cycle to cycle, an entire family of

increasing dimension inverse H��, can be obtained in advance (say up to order 50). Once
stored, this family need not be computed again. Evaluation of the improper integrals I

� ��
can

be obtained by substitution of variable t�"sin(u), giving

I
��

"�

��

�
��
Q(u) T

�
(u) du (99)

in which the excitation function is known only at non-equispaced discrete times
u
�
"arcsin(t�

�
). This integral can be conveniently obtained by using a trapezoidal scheme of

the form

I
��

"

h
�
2

[Q (u
�
)T

�
(u

�
)#Q(u

�
)T

�
(u

�
)]#

h
�
2

[Q(u
�
)T

�
(u

�
)#Q(u

	
)T

�
(u

	
)]#2, (100)

in which the intervals are h
�
"u

�
!u

�
, h

�
"u

	
!u

�
,2, etc.



Figure 13. Chebychev polynomial solution for white-noise-driven oscillator. (a) Comparison with harmonic
sum-based Laplace solution; (b) Chebychev coe$cient magnitude.
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The choice of boundary values needed to obtain a unique solution is not entirely
arbitrary, although the "rst boundary is sensibly chosen as the local origin*i.e., the start of
a cycle. The second boundary can in principle be chosen at any non-integer multiple of
a damped period (since near an integer multiple, ill conditioning occurs). For convenience,
the second boundary is best chosen at 	

�
period. To create an adaptive boundary

value Chebychev polynomial solution, a suitable convergence criterion then needs to be
applied to terminate the generation of the varying dimension coe$cient vector c

�
at

some value k"n. There are many practical possibilities here, for example, termination
could be based on the condition that �

��
(e

����
, where the magnitude of the relative error

term is

�
��

"�c
�
�/max �c

�
� (101)

and e
����

is an acceptably small relative error criterion, say 10��. Unfortunately, this
criterion does not easily account for correlation between successive coe$cients. A better
de"nition of the relative error term (and one that will be used shortly) is

�
��

"max [�c
�
� , �c

���
�]/max [ �c

�
�#�

�
] (102)

in which adjacent pairs of coe$cients are used to construct the error, where a very small
additive term, say �

�
"10���, is used to prevent degeneration when successive coe$cients

are precisely zero. Figure 13(a) shows, for discrete white noise excitation with 6)4 kHz
bandwidth, a comparison between the response of an oscillator obtained via Chebychev
polynomial BV solution compared with a fast Laplace solution using equation (16). The
oscillator has 1% critical damping and 100 Hz natural frequency, for which one cycle is
shown. The Chebychev polynomial boundary values were speci"ed at t"0 and t"	

�
T
�

and, with a relative error criterion of 0)1%, convergence occurred for a polynomial of
degree"31. Figure 13(b) shows the convergence of the polynomial coe$cients where it can
be seen that there is some degree of correlation between adjacent coe$cients, justifying the
use of criterion (102).
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8. ALGORITHM SUMMARY AND APPLICATIONS TO DISCRETE-TIME FORCING

Using the developments in sections 3}5, the fast state-transition algorithm for linear
oscillators driven with general*or high bandwidth discrete random forcing, can now be
summarized and applied. In particular, just two sweeps of displacement transition equation
(5), integrated via equation (67), can generate the required boundary conditions needed for
an adaptive Chebychev polynomial solution of section 7. In this section, the overall scheme
is summarized in three detailed steps, and it is mentioned as to how this scheme can be used
to obtain the displacement response of an m.d.o.f. normal mode system. The scheme is
then applied to two s.d.o.f. cases, "rst to intermittent random excitation with quiet
periods, and second to the prediction of far-future displacement histories for a long
simulation. The e$ciency of the scheme in these applications is compared with the
Laplace/IFFT solution.

8.1. A DETAILED DESCRIPTION OF THE TWO-STAGE ALGORITHM

Step 1: A vector of accurate displacements q
� �

is obtained by using state transition
equation (5), at the times in discrete vector t

� �
, where t����

!t��"n
�
�/�

�
, and where the

integers n
�
are chosen to give the desired successive multiples of the damped oscillator

period. In these transitions, the function �
�
(t!t

�
)"0, so the velocity transition equation

(6) is not needed. Equation (5) is integrated using theO(����f ���) scheme equation (67) in the
form

q(t����
)"q(t��)#(��) (h(t����

!(t��#��))Q(t��#��)#h(t����
!(t��#2��))Q(t��#2��)#2)

!

(��)�
12

[hQ (n
�
�/�

�
)Q(t��)!hQ (0)Q(t����

)]#O(����f ���). (103)

Step 2: By shifting the time-axis back by �
�
period, to de"ne a new vector of discrete times

t
� 	

"t
� �

!�/2�
�
, a second (phased) vector of accurate displacements q

� 	
is obtained at t

� 	
by

using exactly the same approach as Step 1 to predict all but the "rst value of displacement.
This "rst (shifted-time) displacement, is predicted at the "rst 	

�
period, using the

Laplace/IFFT solution (via equation (16)), to avoid the signi"cant numerical integration
error which stems from the introduction of the sudden step at the origin, as a result of the
time-shift. The same initial conditions at the origin are used in this one-o! "rst-cycle
Laplace solution, but in general, the excitation needs to be zero-padded both one cycle
before- and one cycle after, as described in section 2.3. Subsequent displacements at all other
times in t

� 	
are predicted using an appropriate form of equation (103).

Step 3: At selected times t
� ��
, a single cycle of continuous displacement response is

obtained via a Chebychev BV solution using the corresponding elements of q
� �

and q
� 	

as
boundary values, at times separated by 	

�
of a damped period, the Chebychev polynomial

solution is obtained via a coe$cient vector c
�
using equation (94), and the adaptive

convergence criterion (102). To exploit quiet periods in intermittent excitation, greater
e$ciency can be obtained by switching from the use of a single-cycle Chebychev solution, to
the unforced version of equation (5), when it is clear that a forced solution is not needed. To
establish the conditions where this switch can be made, the magnitude of the largest value in
a section of the excitation could in principle be used, but this can be problematic, since to
con"rm the importance of very small magnitudes, the forced solution is needed. An
alternative criterion is to use the "rst two integrals in equation (96) to establish whether the
excitation is e!ectively zero. In random forcing, for example, it would be very unlikely that
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a non-zero section of excitation would be simultaneously orthogonal to both the "rst and
second degree Chebychev polynomials.

Before applying the two-stage scheme to s.d.o.f. systems with intermittent excitation and
for far-future transient displacement prediction, it should be mentioned that the scheme can
be applied to m.d.o.f. normal mode systems, by solving in modal co-ordinates and then
transforming back to physical co-ordinates. However, in a discrete solution, the physical
excitation functions are usually generated (or sampled, in the case of experimental data) at
common discrete times, such that the correspondingmodal excitation vectors are also at the
same common discrete times. However, because the di!erent damped natural periods for
each mode would not correspond exactly to an integer multiple of the sample step size there
would be small misalignment at the end points. If the sampling rate for a high frequency
mode were relatively low, then this indeed would create a problem. But as shown in section
2, in general, the sampling rate for transient response prediction has to be high anyway, such
that the number of points N per cycle, would be in the region 50}1000, depending on the
excitation spectrum. Consequently, this misalignment will be extremely small such that the
nearest neighbourhood value in equation (103) could be used for the phased displacement
predictions, especially when the transition interval t����

!t��"n
�
�/�

�
is very large, as in

far-future response prediction. By contrast, continuous solutions are generated by the
Chebychev polynomial approximation, and therefore this would easily allow construction
of modal displacement vectors with a common time base.

8.2. DISPLACEMENT RESPONSE HISTORY PREDICTION WITH INTERMITTENT EXCITATION

Figure 14(a) shows a section of intermittent random forcing obtained by generating
a section of discrete white noise which has then been amplitude-modulated by three
(Gaussian) shape functions with randommean and variance. By randomly positioning these
excitation functions at positive locations, the total section shows obvious quiet periods: i.e.,
where there is no activity. A very high bandwidth has been chosen with "xed
��"9)765�10�
 s, giving a Nyquist frequency of 51 kHz. This forcing has been applied to
transient displacement prediction for an oscillator with a natural frequency of 100 Hz and
0)1% critical damping. Figure 14(b) shows 12 cycles of predicted displacement via the
scheme described in section 8.1, compared with a Laplace/IFFT solution of section 2. The
state-transition interval is 0)01 s and the O (����f ���) phased displacement predictions are
shown as &&*'' and && ' '' symbols respectively. The Chebychev polynomial solution method is
applied using all these displacements as boundary conditions with 0)2% convergence
criterion in equation (102), and restricting the maximum degree of polynomial to degree 20.
The error between the detailed Chebychev solution and the Laplace/IFFT method is also
shown in Figure 14(b). Figure 14(c) shows a similar comparison between the Laplace/IFFT
solution and the O(����f �) recursive state-transition algorithm (examined in section 4).
This shows no visible error between these two methods but the O(����f �) algorithm is
orders of magnitude slower taking more than 100 times the CPU time of the Laplace/IFFT
solution. By contrast, these 12 cycle predictions via the two-stage scheme described in
section 8.1 take a very similar CPU time for the Laplace/IFFT solution, but the Laplace
solution, as shown in Figure 14(b), is more accurate. Figure 15(a) shows a section
of intermittent excitation and, as a backdrop, the Chebychev polynomial degree needed
to obtain each of the 20 solution cycles shown in Figure 15(b). In this example,
the Chebychev polynomial degree is restricted to a maximum of 30. Figure 15(b) again
includes a comparison with the Laplace/IFFT solution, where the error is also identi"ed.
The O(����f ���) phased displacements are again shown by the &&*'' and && ' '' symbols. In this



Figure 14. Displacement prediction and errors. (a) Intermittent random white-noise excitation; (b) new two-
stage method (&& ' '' and &&*'' plus Chebychev polynomial solution) compared with Laplace/IFFT; (c) single-step
transition method compared with Laplace/IFFT solution showing error.
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case, the CPU time of the two-stage method is almost twice as fast as the Laplace/IFFT
solution.

8.3. FAR-FUTURE DISPLACEMENT RESPONSE HISTORY PREDICTION

One of the main advantages of the two-stage scheme is that optimum O(����f ���) phased
displacements, maintain very high accuracy in amplitude and phase over many cycles even
though the local (detailed) solution obtained via the adaptive Chebychev polynomial
approximation will not be equally accurate. This means that the scheme can be used to do
long simulations very e$ciently when interest is focused only on the "nal sections of
response. In other words, if 10 000 cycles were to be simulated, but only the details of the last
10 cycles were of interest, then the two-stage scheme is a very e$cient way to do it.
Figure 16(a) shows a section of intermittent random forcing and Figure 16(b) shows
a comparison between the two-stage scheme and a Laplace/IFFT solution. Figure 16(a)
again also shows the Chebychev polynomial degree as a backdrop. The relative CPU time
performance of the proposed scheme compared with the Laplace/IFFT solution has been
examined for an increasing number of transient cycles. Figure 17 shows the CPU time ratio
as a function of the total number of cycles, for the case where only the last 10 cycles are of



Figure 15. Far-future displacement prediction with intermittent random excitation via new two-stage method.
(a) Chebychev order adapted per section (last 10 cycles), showing scaled excitation sample; (b) response comparison
with Laplace/IFFT solution.
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interest. The CPU ratio up to a maximum of 300 transient cycles is shown, again for 51 kHz
sampling rate, being an appropriate PC memory limitation imposed on a single-section
Laplace/IFFT solution. The monotonically decreasing behaviour of these relative CPU
times suggests that the two-stage scheme has very marked bene"ts for far-future response
prediction. In particular, when the number of cycles approaches 10�, the CPU time ratio,
would be less than 10��, which in this role, makes the scheme far superior to the
Laplace/IFFT solution.

8.4. NON-STATIONARY DENSITY ESTIMATION

The power of the fast integration scheme described in section 8.1 is now demonstrated in
two test examples in which oscillator response histories are generated for non-stationary
density estimation in a direct Monte Carlo approach. Since the development of the fast



Figure 16. Selected displacement response to intermittent random excitation via new two-stage method.
(a) Chebychev order adapted per selected section, showing scaled excitation sample; (b) response for selected
sections compared with Laplace/IFFT solution.
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integration scheme involved no speci"c restrictions being placed on the distribution of the
discrete excitation process, similar accuracy and e$ciency should be obtainable for general
forcing. The scheme is now applied to non-stationary probability density estimation for
which exact prediction by using wholly theoretical methods is not generally possible,
namely for the non-stationary response prediction for an oscillator with ultra-light
damping, driven from the rest by ultra-broad-band stationary non-normal excitation. In the
"rst application, attention is focused on obtaining the non-stationary displacement density
function. The ensemble of response histories needed for this, can be obtained (at small
discrete time steps) by using the three-steps of the scheme, but in general, with no great
speed advantage over the Laplace/IFFTmethod. Signi"cant improvements in e$ciency can
be obtained, as shown in sections 8.2 and 8.3, if response histories involve excitation quiet
periods or if attention is focused on &&far-future'' displacement prediction. For displacement
density estimation however, there is in fact another way the time-domain scheme can be



Figure 17. CPU ratio in far-future response prediction. New two-stage method versus Laplace/IFFT solution
for detailed displacement prediction of last 10 cycles from total number of cycles.

Figure 18. Histogram obtained from non-normal excitation history compared to normal density function with
the same mean and variance.
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used with even further signi"cant improvement in e$ciency. This is achieved by restricting
the estimations of the non-stationary density to particular discrete times. To be speci"c, if
the time separation can be chosen precisely as the oscillator damped natural period, then
only Step 1 of the scheme in section 8.1 need be used. But this superfast form of the scheme
can only be applied to displacement density estimation. In the second application, attention
is focused on obtaining the non-stationary peak probability or local maxima density
function at times varying from just a short time after oscillator motion commences, to
a relatively very long duration. The peak probability density function is important for
example in fatigue damage assessment for narrow-band random responses*more details



Figure 19. Non-stationary displacement density estimates at six discrete times from start, shown at 1, 10, 20, 30,
40 and 50 damped natural periods (sample size"1000).*, superfast method (Step 1 of new scheme); �, estimates
via Laplace/IFFT method.

Figure 20. CPU time ratio: superfast method (Step 1 of new scheme) versus Laplace/IFFT method.
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on how non-stationary peak densities can be estimated are given shortly. Here, all three
steps of the scheme in section 8.1 are needed to obtain selectively detailed response
information, but the particular e$ciency of the scheme in the role of &&far-future'' prediction
is fully realized. In both examples, comparisons are made wherever appropriate or wherever
possible with density estimates obtained by using histories with the Laplace/FFT solution.

Before describing the results of these two applications, a comment is appropriate about
the sources of non-normal excitation on space structures, and in particular about the form
of excitation chosen to demonstrate the power of the fast algorithm. Examples of the
various forcingmechanisms responsible for random excitation on space structures are given



Figure 21. Non-stationary displacement density function, estimated from oscillator responses obtained via
superfast method (Step 1 of new scheme) at discrete times 0, 1, 2,2, 600 damped periods. Sample size"1000.
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in section 1. In general, modal excitation functions are obtained through calculation or from
measured data. Calculation is in general an enormous task when temporal and spatial
dependence is fully taken into account. If experimental data are used, then it can be
misleading to assume a modal excitation function is normal on the basis of limited
experimental evidence. For example, in the case of #uid turbulence, to construct random
excitation histories, a detailed understanding of the structure of turbulence is generally
required. Although measurement of #ow velocities at a single location may be
approximately Gaussian, experimental evidence con"rms that joint probability density
functions of turbulent #ow velocities can be strongly non-Gaussian. The implications of this
in the case of turbulence (and elsewhere), are that detailed modal excitation forces are likely
to be strongly non-normal. It is also unlikely that a simple functional transformation can be
found to generate excitation histories from normal processes which simultaneously meets
the required target distribution and spectral properties*to achieve this, quite sophisticated
algorithms are needed [30]. For testing purposes, however, the use of simple functional
transformations are indeed useful for generating non-normal excitation.

Here, for both the following examples, non-normal excitation histories are generated by
using the transformation Q �Q � applied to a stationary Gaussian white noise process Q,
without concern for the change this produces to the spectral content. To be precise, the
band-limited white noise source Q is sampled at time steps ��"9)7656�10�
 s, and the
magnitude of the forcing standard deviation is chosen as �


�
�"16.

Starting with the "rst application, a sample of the excitation pdf is shown in Figure 18
compared with a normal process with the same mean and variance to demonstrate its
departure from normality. The bandwidth of the excitation is 51 200 Hz. Figure 19 shows
non-stationary displacement density estimates obtained by using the superfast time-domain
algorithm (Step 1 of the fast scheme) compared with estimates based on the Laplace/IFFT
method at six discrete times from start, namely at 1, 10, 20, 30, 40 and 50 damped natural



Figure 22. Non-stationary peak probability density estimates (local maxima pdf ) via new scheme (Steps 1}3)
showing time from start as a parameter at 10, 200, and 400 oscillator-damped natural periods. �, estimate at 10
cycles via Laplace/IFFT method. (Sample size"1000 for both methods).
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periods. In both cases 1000 samples were included in the ensemble. Here it is evident that
the accuracy of the pdf obtained by using the superfast scheme is indistinguishable from the
Laplace/IFFT method. Figure 20 shows the relative computing times of the two methods,
showing that the e$ciency of the superfast scheme is considerable. Indeed, it is clear that the
superfast scheme can be used to generate the non-stationary displacement density for long
periods of time for which the Laplace/IFFT method would be totally impractical. To
demonstrate this, the superfast scheme has been further applied to obtain non-stationary
displacement density up to 600 cycles, again using 1000 samples. Figure 21 shows the
resulting estimate of the non-stationary displacement pdf in the form of a surface plot. It is
clear from Figure 20 that the Laplace/IFFTmethod would have required around 800 times
as long to generate the same amount of data for this relatively long duration of
non-stationary density function. But when the super-fast scheme is used, only discrete
values of the response are obtained, which are not useful if derivative information is needed,
such as, for obtaining peak probabilities.

In the second example, the full scheme of section 8.1, is used on the same 100 Hz oscillator
with the same damping and non-normal excitation to obtain non-stationary peak
probability density function estimates at speci"c times, namely after a short time, and after
extremely longer periods. A collection of data needed to estimate the peak density function
of a non-stationary process actually requires local maxima samples at identical times. In
practice, it is impossible to simulate such data, since sample maxima will occur at di!erent
times. For stationary processes, sample peaks can be collected and used to construct the
density by assuming the local maxima process to be ergodic. For non-stationary maxima, it
is necessary to use a short time window in which very little change occurs in the statistical
properties of the peaks. The probability density function can then be estimated from data
captured within that window to give an estimate of the density function at the centre of the
window. Here, the time window chosen corresponds precisely to two single periods. The
three steps of the fast scheme (section 8.1) have been applied at three discrete times
corresponding to 10, 200, and 400 cycles respectively. A comparison with the Laplace/IFFT
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method for the 10-cycle application is shown in Figure 22. This con"rms that the new
scheme generates probability density estimates which are again indistinguishable from
those obtained with Laplace/IFFTmethod. But in the other two cases (200 and 400 cycles),
the Laplace/IFFT method is far too slow and therefore not practical (in this case, the CPU
ratio ranges somewhere between Figure 17 and Figure 20).

9. CONCLUSIONS

A new time-domain method has been developed for computing displacement histories of
single linear oscillators with arbitrarily light damping and ultra-high-bandwidth discrete
forcing. This can be of particular use for obtaining long-duration amplitude and phase
associated with undamped response of s.d.o.f. and normal-mode systems with
high-bandwidth non-normal random excitation. The paper shows the following.

� In general, non-stationary history prediction requires very high bandwidth, much
higher than that needed for stationary histories. Zero-padding is needed for
sub-sectioned solutions via fast Laplace/IFFT solution, which cannot readily exploit
intermittent excitation or prediction in the far-future.

� The local truncation error associated with simple trapezoidal-based recursive
integration does not converge for single transitions involving discrete-time white noise
excitation. However, in multiple transitions, this error is shown not to be propagated,
allowing accurate (but very slow) recursive time-domain integration.

� Detailed error analysis using the Euler}Maclaurin summation formula, reveals that for
integration over a "nite transition interval using band-limited white noise excitation,
the best interval is any integer multiple of the damped natural period, where the
velocity equation is not needed, and where the O(����f �) truncation error can be
trivially evaluated. This culminates in a computationally very simple optimal
O(����f ���) scheme, which is shown to be more accurate than any other "xed-step
integration scheme (of higher, lower, or equal order).

� This optimalO(����f ���) scheme can be used on its own with single oscillators to obtain
&&super-fast'' displacement predictions at selected discrete times, giving massive speed
advantages over all the alternatives examined.

� By combining this optimum O(����f ���) scheme with an adaptive Chebychev
polynomial solution, continuous displacement histories can be obtained for selected
cycles in a newly proposed &two-stage'' method.

� This combined two-stage method is in general faster than simple trapezoidal-based
recursive integration by at least a factor of 100.

� For general applications, the proposed two-stage scheme is marginally faster than fast
Laplace/IFFT solution, with further improvements being realized for intermittent
excitation. But for non-stationary density estimation involving history prediction in the
far-future (such as for peak probability density estimation), the speed advantage over
the fast Laplace can be enormous, varying in practice by a factor between 10 and
10 000.

The overall conclusion then for non-stationary density estimation using Monte Carlo
simulation of oscillator motion with very light damping and ultra-high-bandwidth
discrete-time non-normal forcing, is that the simplicity of the fast Laplace/IFFT method
makes it best for short-term history prediction. But for special applications involving
history prediction into the very far-future, the proposed fast time-domain method is vastly
more e$cient and is thus recommended.
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APPENDIX A: LIST OF SYMBOL DEFINITIONS

A, B system matrices (2�2), in state-space model
A

�
, B

�
, A

�
, B

�
square matrices of dimension n�n needed for Chebychev polynomial solution

B
�

Bernoulli numbers in Euler}Maclaurin summation formula (EMSF)
[a, b] arbitrary time interval
C

	
complex Fourier coe$cients

[C] damping matrix
c
�

Chebychev polynomial coe$cients of a function
c�
�

Chebychev polynomial coe$cients of the "rst derivative of a function
c�
�

Chebychev polynomial coe$cients of the second derivative of a function
c
�

vector of Chebychev polynomial coe$cients
e total truncation error in trapezoidal integration
e
�

"rst truncation error term in trapezoidal integration ("rst error term in the EMSF)
e
���	���

r.m.s. value of "rst truncation error term in trapezoidal integration
e
�����

upper bound on truncation error term in trapezoidal integration
e
������

upper bound on displacement truncation error using trapezoidal integration
e
������

upper bound on velocity truncation error term using trapezoidal integration
e���
r.m.s.

, e���
r.m.s.

, e��

r.m.s.

error terms in the EMSF for speci"c transitions equal to a damped oscillator
period

e
����

error convergence criterion for adaptive Chebychev polynomial solution
f
�

discrete frequency in Hz
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f
	
�

maximum frequency in Hz
f (�) function of time (to be integrated using dummy variable)
f



Nth discrete value of a function
f �



Nth discrete value of the derivative a function
G

�
(t, �) displacement convolution integrand

G
�
(t, �) velocity convolution integrand

h(t) impulse response function
H( j�) complex frequency response function
H square matrix needed for Chebychev polynomial solution
I integral sum
I
�

integral sum via Simpson's rule
I
��	���

r.m.s. value of integral (via trapezoidal rule)
I
�
, I

�
displacement and velocity convolution integrals

I�� integral via Euler}Maclaurin summation formula for step size ��
I2�� integral via Euler}Maclaurin summation formula for step size 2��
I
���

optimum order displacement transition integral
I



sixth order displacement transition integral
I
��

integrals needed to obtain Chebychev polynomial solution
I
� 
��

contribution to integral at the Nth step
j complex number"�!1
[K] sti!ness matrix
[M] mass matrix
p
�
(t) excitation vector

q
� �
, q (t) displacement response at discrete and continuous time

q
�
(s) Laplace transform of the displacement response

q
� �

vector of displacements at discrete times given by vector t�
q
� 	

vector of displacements at discrete times given by vector t	
Q

�
(t) excitation function

r
�

ratio: r.m.s. value of integral truncation error/r.m.s. of the integral
r
��

ratio: r.m.s. value of truncation error ("rst term in EMSF)/r.m.s. of integral
r��� , r��� , r��
 ratio: r.m.s. truncation error (of corresponding order)/r.m.s. of integral using

EMSF for speci"c transitions equal to a damped oscillator period
S
�
(�) power spectral density function

S
���� (�) power spectral density function for the nth derivative of X (t)
t time variable
t
�

discrete time
t� time variable within interval [!1, 1] (for Chebychev polynomial solution)
¹

	
�
duration of time needed for FFT solution

¹
�
�

duration of zero padding time needed for FFT solution
T
�
(t) Chebychev polynomials of a function of time t

T
���

half-period of oscillator
u
�

input vector in state-space model
=

�
(t) continuous-time band-limited white noise process

=
��

discrete-time samples of band-limited white noise process
=Q

��
discrete-time samples of the derivative of a band-limited white noise process

=G
��

discrete-time samples of the second derivative of band-limited white noise process
x
�

state vector
x
� 


(t) state vector after N transitions
X(t) stationary stochastic process
Z

�
uncorrelated random numbers with standard deviation 


�
Z
�

displacement vector in physical co-ordinates
Z

��
( j�) Fourier-transformed excitation

Z
��

( j�) complex displacement response

Greek letters



�	

, 

�	

, 

		

partial fraction coe$cients for Laplace solution
�
� 
��

truncation error of the Nth step in "nite state transitions
�x

� 

propagated truncation error in the state vector
�
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�
��

relative magnitude of Chebychev polynomial coe$cient (type 1)
�
��

relative magnitude of Chebychev polynomial coe$cient (type 2)
�� time step size
�
�
(t)2�

�
(t) state transition functions

	
�
, 	

�
complex conjugate roots of the characteristic equation



�

standard deviation
�

��
undamped natural frequency

�
�

oscillator damped natural frequency
�

	
excitation frequency

�
�

damping factor
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